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Relativistic Orbits of Classical Charged Bodies in a 
Spherically Symmetric Electrostatic Field 

H a r t m u t  F r o m m e r t  ~ 
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The orbits of a relativistic charged body in a static, spherically symmetric electric 
field are calculated and classified in the classical theory. Contrary to the 
nonrelativistic problem, we find that there is a limiting minimal value for the 
angular momentum Lc. Should the actual angular momentum of a charged test 
body be lower than this limit, the test particle will spiral into the central point 
charge instead of having (precessing) Keplerian orbits. 

1. INTRODUCTION 

Within Dirac's theory or Sommerfeld's semiclassical theory for the fine 
structure of the hydrogen atom it is well known that the ground state will 
become unstable for nuclear charges (of hydrogen-like ions) Z > l/ct (see, 
e.g., Greiner, 1981). It is the aim of this paper to show that this phenomenon 
is not a typical quantum mechanical one, but that also in the classical theory 
of a relativistic charged point particle within a static Coulomb field there 
exist nonstable orbits connected with the existence of a critical angular 
momentum Lc; should the actual angular momentum of the point particle be 
lower than Lc, the particle will spiral into the central point charge independent 
of its energy (unstable orbit), while the nonrelativistic treatment yields Kepler- 
ian orbits in any case (ellipses, parabolas, and hyperbolas). As in the quantum 
mechanical case mentioned above, we neglect the radiative reaction force on 
the charged point particle. 

2. LAGRANGE FUNCTION AND THE EQUATION OF MOTION 

Neglecting the radiative back.reaction, the Lagrange function of a relativ- 
istic point particle (rest mass m0, charge e) in an underlying electromagnetic 
potential A~ is given by 
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.~ = _moC2v/~o.,,v~v~ _ e v "A .  (1) 
c 

v.  is the timelike 4-velocity, and xl.~ = d iag(+l ,  - 1 ,  - 1 ,  -1 ) .  In the 
following, the magnetic potential Ai, i = 1 . . . . .  3, is assumed to vanish, 
and A0 = col), where �9 is the electrostatic potential and a function of the 
radial coordinate r only. Then the Lagrange function (1) simplifies to 

~ = - m o c  2 -~ e ~ ( r )  (2) 

where v is the absolute value of the 3-velocity. Because of the spherical 
symmetry of q~ there exists angular momentum conservation, and conse- 
quently the motion of the particle will take place in a plane orthogonal 
with respect to the angular momentum vector; we choose as this plane the 
x - y  plane. 

Using plane polar coordinates r and ~p, we find that v 2 simplifies to 

V 2 = t ~2 4- r 2 ~  2 (3) 

and we can derive the Euler-Lagrange equations for r(t) and tp(t). In the 
case of q~ we have, since O.~/-rq~ -- 0, a conserved angular momentum L, i.e., 

m 0 F2t.p 
L - - const (4) 

x/l - v2/c 2 

Inserting v 2 from (3) and resolving for ~, we get 

c ~ .  1 - ~2/c2 

(P = r l + (mocr/L) 2 (5) 

Since ~ is not explicitly dependent on t, we have, in addition, energy conserva- 
tion, i.e., Hamilton's function is a constant; this results in 

mo c2 
E - + e ~  = cons t  (6)  

, / 1  - v 2 / d  

Inserting (3) and resolving for ~ yields 

i ' =  c ~ l  - ( mOc2 Y 

Eliminating ~ by equation (5), one obtains after a short calculation 

m~ ~2[1 + (8) 
e = c 1 \ E - ~ e ~ ]  L m ~ r  
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Herewith equation (5) takes the form 

LC 2 

c~ - (E - e@)r 2 (9) 

By combination of (7) and (9) we get the differential equation for calculating 
the orbit, i.e., r(q0): 

dr i" = r 2 m ~  / ( E - - e d P Y  ( L ) ! 
T Vk moc 2 ] - l -  (10) 

Substituting r = 1/s, we can rewrite this as 

dq~ -~ ~/ \ moc2 j - I -  ~moc s2 (11) 

For the Coulomb potential �9 = Q/r = Qs we get finally 

ds _ moc 
dq~ -L ~ - 1  - 2  E eQ s - _ 

(12) 

Looking now for a more suggestive form of the orbital differential equation, 
one can take the square of this equation, differentiate with respect to q~, and 
divide by 2 dq~/ds. Thus one obtains 

d~s - 1 - (s + so) (13) 
d~p2 - 

with 

( E/moc2)( I eQ I /moc2)(moc/L ) 2 
So = I - (eQ/cL) 2 (14) 

The upper sign'in (13) applies if e and Q have the same sign, and the lower 
sign applies otherwise. Depending on the value of L, equation (13) has three 
different types of  solutions: 

1. For L > Lc: periodic solutions (trigonometric functions) in q~. 
2. For L = Lc: a limiting algebraic case. 
3. For L < Lc: nonperiodic (hyperbolic and exponential functions). 

Where the "critical" angular momentum L~ is given by 

= e Q  ( 1 5 )  Lc 
c 
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For easier processing, it is appropriate to substitute three new constants 
for E, L, and Q (or Lc): 

E L Lc l eQI 
/ : =  l~ . -  (16) 

u := moc2, moc ' moc -- mo c2 

where u is a dimensionless "specific energy," while the "specific angular 
momentum" l and the "specific critical angular momentum" l~ have the 
dimension of a length. The length l~ gives the distance at which the absolute 
value of the electric potential energy eQ/r  of the test particle (i.e., between 
the charges e and Q) is equal to the rest energy moc z of the particle. This 
demonstrates the special-relativistic nature of the effects where l~ or Lc plays 
a role. Then equation (12) reads 

ds _ 1 x/(u 2 _ I) -T- 2ul~s -- (/2 - ~)s 2 (17) 
d,p l 

The constant So in (14) takes the value 

s0-- / 2 _  ~ (18) 

3. INTEGRATION OF THE EQUATION OF M O T I O N  

3 .1 .  L a r g e  A n g u l a r  M o m e n t u m  L > Lc: K e p l e r i a n  O r b i t s  

In the case I > lc or L > Lc = l e Q I / c  we can rewrite equation (17) in 
the following form using (18): 

ds _ 1 x/(u 2 _ 1) - (/2 - ~)(s 2 _ 2s0s) (19) 
dq~ l 

After quadratic completion we obtain 

ds 1 
- { [ (u  2 - 1) + (/2 - ~ )sg]  - (/2 - ~ ) ( s  -+ So)2} I/'2 

d ,  l 

- 

With respect to the radicand we can substitute 

x/(u 2 -  1)/2 + 12 
s = ~ S o +  

(20) 

cos et (21) 

which yields from (20) 
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dqo 1 - ~ a = 1 - (to tO0) 

Combining (21) and (22), we obtain for r(tO): 

ro 
r(tO) = -T-I + �9 cos[~/l - (/j/)2(tO _ tO0)] 

where 

(22) 

(23) 

�9 = u lc  = + - ( 2 4 )  

is the numerical eccentricity. The upper sign applies in the repulsive and the 
lower one in the attractive case. 

The solution (23) represents a p r e c e s s i n g  Keplerian orbit, i.e., a precess- 
ing ellipse, parabola, or hyperbola, depending on the value of �9 < 1, = 1, 
> 1, respectively, where in case of  a repulsive force ~ > 1 must hold because 
of r --> 0. In the case of bound states it is a periodic orbit with period 2"rr/[ 1 
_ (ldl)21~12 > 2~; thus we have a progressive periapsis shift of 

( 1 1) (25) 
Bto = 2~r ~/1 - -  ( l J l )  2 

per cycle caused by the critical value of  lc. For large values of L or l, this 
expression can be approximated by 

In case of scattering states �9 > 1, we have a precessing hyperbola, which 
means that the asymptotes calculated from (23) are given by 

, (1) 
to - too = • ~/1 (l j/)2 arccos -7- (27) 

This precessing hyperbola does not coincide with an exact hyperbola with 
another eccentricity. Instead, its asymptotes, together with its apsid line, 
precess progressively while the particle moves around the center, at exactly 
the same rate per passed angle as for the ellipses in the bound case above, 
so that from approach to escape the trajectory has precessed by a total of  

= ( 1 1 ) . 2  arccos(-7-~) (28) gto 
\ ~ / 1  - ( l d l )  2 

If the specific angular momentum l comes close to the limit l~, the angle gto 
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will become larger and larger, so that the particle may orbit the central charge 
one or more times before it escapes again to infinity (see Fig. I). 

Such types of orbits are also known from general relativity, where both 
massive and massless test bodies with small angular momentum have similar 
trajectories within Schwarzschild's metric gravitational field (see, e.g., von 
Laue, 1965, w and Misner et  al.,  1973, Chapter 25.6). However, as stated 
above, our results are a purely special-relativistic effect, while in the Schwarz- 

-,~ -2 j ~ , i  

-10 .75~ 

e = ~ = 1.41, L = 1.15Lc. 

v 

- 7 . 5  .7150 
= 1.1, L = 1.0114Lc. 

Fig. 1. The test particle may orbit the central charge one (a) or more times (b) before it 
escapes again to infinity if the angular momentum L approaches Lc. 
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schild case the nonlinear structure o f  the gravitat ional  field has an addi- 
tional impact.  

3.2. T h e  L imi t ing  Case  L = Lc: Q u a d r a t i c  Spiral  Trajectories  

For L = Lo i.e., l = l~ (corresponding to So = ~) ,  equation (17) takes 
the fo rm 

= (st -7- s) (29) 

with 

U 2 --  1 
Sl - - -  (30) 

2ulc 

(the upper  sign is valid for  repulsive forces,  the lower  one for the attractive 
case). The  solution reads 

u 
s = ~ (tO - %)2 _ sl (31) 

According to (30), sl is positive, 0, or  negat ive as u > 1, = 1, or < 1, 
respectively.  Then the trajectory is given by 

where  

ro 

-T-a(tO -- tOo) 2 -T- l 
(32) r 

2ulc u 2 

r ~  lu 2 -  11'  a -  lU2_ 11 

Since r must  be positive, it is valid for: 

�9 u < 1 and attractive forces: The  trajectory has a maximal  distance 
r0 f rom. the  origin at tO = tOo and spirals quadratically into the origin 
as ItO - tO01 ~ oo. 

�9 u > 1 and attractive forces: 

1 _ ~ -  1 (33) ItO - tO01 > - ~  
u 

The  trajectory comes  f rom infinity at I to - tOol = l /v /~ and spirals 
quadratically into the origin for  I to - tO01 ~ oo. 

�9 u > 1 and repulsive forces: 

1 _ v / - J -  1 
- (34) Ito tool < -----~ 

4 a  u 
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In this case, ro = r(tp = r represents the minimal distance from 
the central charge and for I go - r ---> 1/4/~ the trajectory runs out 
to infinity without any spiraling. 

No solution exists in the repulsive case for u < 1. For u = 1 (Sl = 0), we 
have only a solution in the attractive case, namely 

s = (ul2lc)( tp - r 2 (35) 

which comes from infinity at r = tpo and spirals quadratically into the origin 
with Igo - r ---> co. 

3.3. Small Angular  M o m e n t u m  L < Lc: Exponent ia l  Spiral  Orbi ts  

In the last case L < Lc, i.e., l < It, we can rewrite equation (17) as 

(ds~2/2 = ( 1  _k u2/2 ~[- ( ~ _  /'2)2 ( S~So )  2 -  1] (36) 

[So according to (18) and upper sign for repulsive, the lower one for attractive 
forces]. In the following, it is convenient to introduce the abbreviation 

b = x/(/J/) 2 - 1 (37) 

which is a positive real constant. We discuss the solutions of  this equation 
of motion for the a t t r a c t i v e  c a s e  ( e Q  < 0) first. Then we have to distinguish 
three cases, corresponding to the value of  the "specific energy" constant u: 

A. u < l, i.e., sum of  kinetic and potential energy negative: In this case 
the solution of  (36) reads (see Fig. 2) 

1 

-1 "O'.S 

-1 

a = 1.5, b = 0.5. 
Fig. 2. Orbits for L < Lc, u < 1 (bound states). 
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ro 
r = (38) 

1 + a{cosh[b(q~ - q~o)] - 1} 

where  

~_/2 
= > 0 (39) ro ~/~ - (1 - u2)/2 - ulc  

1 
a = 1 - u l d ~ / ~  - (1 - u2)/2 > 1 (40) 

The  t ra jectory desc r ibed  by  equa t ion  (38) has its greates t  d is tance  ro f r o m  
the or igin  at q~ = q~o and  spirals exponen t i a l ly  into the central  charge  for  
both  ~p ---> oo and  ~p ---> - ~  as 

2ro 
r --~ - -  e -bl~~ (41) 

a 

B. u = 1, i.e., s u m  o f  kinetic and  potent ia l  ene rgy  zero:  The  solut ion 
o f  (36) takes  the f o r m  (Fig. 3) 

r l  
r = (42) 

cosh[b(q~ - q~o)] - 1 

with 

~ - I z 
rl - > 0 (43) 

lc 

The  t ra jectory app roaches  infinity for  q~ = q~o and  spirals  exponent ia l ly  into 
the or ig in  for  q~ ---> oo as 

r --> 2 r l e  - b t ~ - ~ ~  ( 4 4 )  

C. u > 1, i.e., s um o f  kinet ic  and  potent ia l  ene rgy  posi t ive:  Equa t ion  
(36) has the so lu t ion  (Fig. 4) 

ro 
r = (45) 

a{cosh[b(q~ - q~o)] - 1 } - 1 

with 

~ - I 2 
ro = > 0 (46) 

ulc  - ~/l~ - (1 - u2)/z 

1 
= > 0 (47) 

a u l f f ~ / ~  - (1 - u2 ) l  ~ - 1 
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6 

i 

l 
2 

b =  0 .2 .  

' ~ 

b = 0 . 3 2 .  
Fig. 3. Orbits for L < L., u = 1 (limiting case). 

Because  the d is tance  r mus t  be  a lways  pos i t ive ,  the range  o f  q~ is res t r ic ted 
so that the denomina to r  in (45) remains  posi t ive:  

I q~ - q~01 > ~  arcosh 1 + = qo| (48) 

The  t ra jectory  does  not  en ter  the ~p interval  q~o - q~  < q~ < q% + q0~. It 
comes  f rom infini ty at 

~o = ~Oo ---+ ~o~ 
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a = 1 . 5 ,  b = 0 . 1 5 .  

Fig. 4. Orbits for L < Lc, u > 1 (scattering states). 

and  sp i ra l s  e x p o n e n t i a l l y  in to  the  o r i g i n  fo r  I ~  - r ---> oo as 

2ro 
r ~ - -  e -blq~-~pOI 

a 
(49)  

i.e.,  e x a c t l y  as  in the  f i rs t  case .  
In  a s e c o n d  s tep  w e  d i s c u s s  the  m o t i o n  fo r  the  r e p u l s i v e  case .  F o r  this ,  

the  s o l u t i o n  o f  (36)  r eads  

ro 
r = (50)  

1 - a{cosh [b ( tp  - r - 1 } 

wi th  

r0 = (51 )  
ulc  - ~ / ~  - (1 - u2)/2 

1 
a = (52)  

u l J , / ~  - (1 - u2)/2 - 1 

B e c a u s e  o f  r > 0 i t  f o l l o w s  tha t  u > 1 m u s t  ho ld .  T h e  t r a j ec to ry  has  a 
m i n i m a l  d i s t a n c e  r0 = r(tpo) and  goes  to i n f in i ty  w i t h o u t  any  s p i r a l i n g  for  

I r - qool ---) qooo = ~ a r c o s h  , 2 
\4lc - (1 - u2)/:  
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Table I. Attractive Case 

E < m o c  2 E > m o c  2 
(bound states) E = mac 2 (scattering states) 

L> Lc 

L=L~ 

L<L~ 

Precessing ellipse, Eq. Precessing parabola, Precessing hyperbola, 
(23), 0 -< e < 1 Eq. (23), e = 1 Eq. (23), e > I 

Quadratical spiral from Quadratic spiral from Quadratic spiral from 
maximal ro into the infinity into the infinity into the 
center, Eq. (32), center, Eq. (35) center, Eq. (32), 
lower signs plus sign before 

RHS, minus sign 
in denominator 

Exponential spiral from Exponential spiral Exponential spiral 
maximal r0 into the from infinity into from infinity into 
center, Eq. (38), Fig. the center, Eq. (42), the center, Eq. (45), 
2 Fig. 3 Fig. 4 

It never leaves the q0 interval q~0 - q0~ < q0 < q00 + qo~. It comes  from infinity 
at q~ = qo 0 - q0oo, has its closest approach, r = ro, at tp = qOo, and leaves 
again to infinity at qo = q0o - q0~. 

4. S U M M A R Y  

The different classes o f  orbits discussed above for the special-relativistic 
Cou lomb problem are summarized in Tables I and II. 

Obviously,  in classical special-relativistic electrostatics, there exists a 
limiting angular momentum:  I f  a charged body which is attracted by the 
electric field has less angular momen tum than this critical value, it will spiral 
into the source, and this already without taking into account  the radiative 
energy losses. The physical  meaning is that low-angula r -momentum test 
charges get so close to the central charge, i.e., into such a strong field, that 
they are accelerated to relativistic velocities and can then no longer escape. 

Besides the fact that this result is o f  interest on its own,  one may  look 
for applications, which can be expected in that part o f  physics  where special 

Table II. Repulsive Case 

E >  moc 2 

(scattering states) 

L>L~ 

L = L~ 

L<L c 

Precessing repulsive hyperbola, Eq. (23), upper sign, ~ > 1 
Quadratic approach to and escape from minimal ro to infinity, Eq. (32), 

upper signs 
Exponential approach to and escape from minimal ro to infinity, Eq. (50) 
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relativity plays a role, while quantum effects stay weak. However, with respect 
to applications, the radiative backreaction will be important and must be 
taken into account. This will be done in a subsequent paper. Nevertheless 
we will give an estimation of the critical situation discussed above: For 
electrons as test particles, it is necessary to concentrate a charge of 

Q = ldnoc21e ~ 4.2 X 10'2e(/Jcm) 

in a volume of a radius smaller than Ic, i.e., for a l-cm radius, more than 
4 x 1012 elementary charges have to be stabilized and localized in this 
volume, generating a voltage at its surface which corresponds to the electron's 
moc2/e, i.e., more than 5.11 • 10 5 V; "classical" test bodies would require 
even a much higher central charge. It may be difficult to realize such a 
densely packed charge. However, it is the hope that the radiative reaction 
force will improve the experimental conditions. 
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